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The immersed boundary method is known to exhibit a high degree of numerical
stiffness associated with the interaction of immersed elastic fibres with the surround-
ing fluid. We perform a linear analysis of the underlying equations of motion for
immersed fibres, and identify a discrete seffibfe modeswhich are associated
solely with the presence of the fibre. This work generalises our results in a previous
paper (1995SIAM J. Appl. Math55, 1577) by incorporating the effect of spread-
ing the singular fibre force over a finite “smoothing radius,” corresponding to the
approximate delta function used in the immersed boundary method. We investigate
the stability of the fibre modes, their stiffness, and their dependence on the problem
parameters, focusing on the influence of smoothing. We then extend the analytical
results to include the effect of time discretisation, and draw conclusions about the
time step restrictions on various explicit schemes, as well as the convergence rates
for an iterative, semi-implicit method. We draw comparisons with computations and
show how the results can be applied to help in choosing alternate time-stepping
schemes that are specially tailored to handle the stiffness in immersed fibres. In
particular, we present numerical results that show how fully explicit Runge—Kutta
schemes perform in comparison with the best of the semi-implicit schemes currently
in use. (© 1999 Academic Press

Key Wordsimmersed boundary method; linear stability; time-stepping schemes.

1. INTRODUCTION

Some ofthe most challenging problems in scientific computation involve the interactic
aviscous fluid with complex, moving boundaries. One approach that has proven partict
effective in handling a variety of such problems is thenersed Boundary Methodahich
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42 STOCKIE AND WETTON

was originally developed by Peskin [15] to compute the flow of blood in a two-dimensior
model of the heart. The method is a mixed Eulerian—Lagrangian scheme, in which
equations describing the fluid motion are discretised on a fixed, Cartesian mesh, w
the immersed boundary is tracked at a set of points that move relative to the underly
fluid grid. The coupling between the fluid and fibre is accomplished using smoothed d
functions, which serve to interpolate quantities between the two grids. The method has s
been extended to three-dimensional simulations of flow in the heart and arteries [20, 16]
a diverse collection of other problems, including swimming motions of marine worms [¢
particle suspensions [8], and wood pulp fibre dynamics [22], to hame a few. Furthermc
the idea of using smoothed delta functions to approximate singular forces generate
internal boundaries is a technique that has recently been applied in concert with a varie
other numerical methods including particle-in-cell [10], finite element [24, 26], and lev
set methods [3].

Considering the widespread use ofimmersed boundaries as a modeling and computat
tool, very little analysis has been performed on either the underlying model equations
the numerical method. Exact solutions were derived for a fibre immersed in an invis
fluid [5], and for variations of the problem specialised for viscous flow through partic
suspensions [7]and inthe inner ear [12]. Beyer and LeVeque [2] analysed a one-dimensi
version of the immersed boundary method, and showed that it is limited to first order spe
accuracy by the delta function approximation. This limitation on accuracy has also b
confirmed computationally in higher dimensions [11]. Computations also indicate that
problem suffers from a high level of numerical stiffness, and considerable effort has g«
into developing semi-implicit variants of the method that aim to alleviate the severe time s
restrictions [25, 13]. However, these attempts have met with limited success, and the maj
of computations are still performed using an explicit treatment of the immersed bound:

Our purpose in this paper is two-fold: first, to examine the stability and stiffness charact
istics of incompressible, viscous fluid flows containing moving, elastic fibres; and seconc
use these results as a basis for evaluating the efficiency of various explicit and semi-impg
time-stepping schemes. This work is based on an earlier paper [23] that employed a lii
stability analysis to identify solution modes arising solely from the presence of animmer:
fibre. The severe stiffness observed in computations was traced to the presence of thes
bre modes,” and attributed to a combination of small viscosity and large fibre force. Her
fluid flows with immersed fibres experience something very unlike the &yaiolds num-
ber limitation encountered in flows without a fibre. While our previous paper was able
pinpoint the source of the stiffness and its dependence on the parameters, the predictec
step restrictions were much smaller than those actually experienced in computations.

In the current paper, we address this discrepancy by including the effects of smoott
through delta function approximation, and thereby gain a better quantitative measure o
stiffness inherent in fibre modes. We begin in Section 2 with a statement of the equati
governing the motion of an isolated fibre immersed in a two-dimensional Stokes flow, ¢
then briefly outline the immersed boundary method. The linear analysis of the immer:
fibre problem with a smoothed forcing term is performed in Section 3, which yields
dispersion relation for the fibre modes. The behaviour of these modes is compare
computed solutions and to our earlier work on the analytical solution for the exact de
function problem. Section 4 extends our analysis to time discretisations, and uses stat
diagrams to investigate the time step restrictions on schemes that are explicit in the
force. We explore a particular semi-implicit discretisation, which can be formulated
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an iteration on the fibre position, and verify the predicted convergence rates in nume
experiments. Finally, through comparisons of the various time-stepping schemes, we :
that a fully explicit, fourth order Runge—Kutta method can be competitive with the sel
implicit schemes that are currently in use.

2. IMMERSED FIBRES

For the remainder of this work, we will consider an isolated fiBremmersed within

a rectangular domaige that is filled with a viscous, incompressible fluid (refer to Fig. 1)
We single out a lone fibre for reasons of mathematical convenience, a simplification w
seems reasonable when one considers that even the most complex immersed surfe
three dimensions, such as the heart model in [16], are constructed of interwoven netv
of such fibres. The fibre is assumed massless and neutrally buoyant, so that the fluit
fibre can be treated as a composite, viscoelastic material, described by a single ve
field. This is the major advantage of the model, since it allows the fluid and fibre to
described by the same set of equations.

2.1. Mathematical Formulation

Consider a square fluid domaif?,= [0, 1] x [0, 1], with periodic boundary conditions
in both thex- and y-directions. The motion of the fluid—fibore composite is governed k
Stokes’ equations

au
,0§=MAU—VP+F, (1)
V.u=0, 2)

whereu(x, t) = (uU(x, t), v(x, t)) is the fluid velocity,p(x, t) is the pressure;(x, t) is the
fluid body force, angb andu are the (constant) fluid density and viscosity.

Our reason for considering Stokes’ equations (and ignoring the effects of convectio
that the serious numerical stability problems encountered in computations are well kn
to arise from the stiffness in the immersed boundary. While high Reynolds humber flow
require a finer mesh to resolve the boundary layer effects around complex elastic struct

r==3 Q+
yd
" \
fibre
I

FIG. 1. The two-dimensional model: a fluid domaif, which is divided into two partsQ* and2~, by an
immersed fibrd".
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and thereby naturally require a smaller time step, there is no inherent Reynolds nun
limit on the immersed boundary method. The method is not tied to a specific fluid solv
and even when one uses alternate solvers specially tailored to handle convection-domir
flows, the stiffness in the immersed fibres is still the major consideration [19].

The position of the fibre is given by = X(s, t), wheres is a parameterisation df
in some reference configuration. SinCes constrained to move at the same velocity ac
neighbouring fluid particles, we write

X
50 = u(Xx(s, t), t). 3)

The final element needed to close the system is an expression for thé-fdeeause
the fibre is neutrally buoyant, we assume that gravitational effects are negligible, so that
external force- arises solely from the action of the elastic fibre. [és, t) be the tension
force in the fibre and assume thais a function of the fibre strain:

T=T<8X>. 4)

as
It can be shown under further assumptions [16] that the local force density per unit len
is given by the expression

0
f(s,t) = 8—S(TT), (5)

wherer is the unit tangent vector 0. For example, if the tension depends linearly on the
strain asT = o|3X/ds|, then Eq. (5) reduces to

92X

f=o——.
“ 9s?

(6)
Taking (6) as the force density is analogous to linking successive fibre points by lint
springs with spring constaat and zero resting length.

Since the force is zero everywhere except on the fibre, the fluid body Foman be
regarded as a distribution and written compactly as the convolution of the fibre force den
with a delta function,

Fx,t) = /rf(s, t)-8(x — X(s, 1)) ds, (7

whered(xX) = 8(X) - 8(y) is the product of two Dirac delta functions. Finally, we rewrite
the right hand side of the fibre evolution equation (3) in the form of a convolution of tf
velocity with a delta function

%=/u(x(s,t),t)~8(x—X(s,t))dx. (8)
Q

ot
There is now clearly a certain symmetry between Egs. (7) and (8), which will prove
be very useful in Section 2.2 from the standpoint of constructing a numerical schel
Equations (1), (2), and (8), along with the definition of the fibre force in (4), (5), and (7
form a coupled system of integro-differential equations for the motion of the fluid and fibi
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It is important to mention that there is another, equivalent formulation of the proble
in which the singular delta function terms are supplanted by jump conditions that re
the fluid stress on either side of the fibre. This “jump formulation” was the basis of «
analysis in [23], but is inappropriate for the current work where our aim is to determine
investigate the effect of replacing the delta function with a smooth approximation.

2.2. Immersed Boundary Method

There are many variants of the immersed boundary method, but we will present the me
in a form very similar to that originally proposed in [15], and which is still commonly i
use. This scheme is explicit in the fibre force, and any discussion of details relate
semi-implicit discretisations will be postponed until Section 4 when they are needed.

The fluid domain is divided into a fixedy x N grid of points denoted; ; = (x;, yj) =
(ih, jh), with spacingh = 1/N in both directions. The domain is doubly periodic so the
the pointsxp and xy are identified with each other, and similarly witg andyy. The
fibre position is a Lagrangian quantity which is discretised at a s&f,ahoving points,
with the parametes € [0, 1] taken at discrete locatiorss = | - hy, whereh, = 1/N,.
Both fluid and fibre unknowns are sampled at equally spaced time integvaisn - k,
wherek is the time step. Figure 2 shows a typical fluid—fibre grid. The discrete velocity
written asuﬂj A~ U(x, Yj, tn) atfluid grid points, j =0,1,...,N—-1andn=0,1, ...,
with analogous expressions for pressure and force. Similarly, the fibre position is den
X'~ X(s,ty), forl =0,1,..., N, — 1.

The delta functions appearing in (7) and (8) are replaced by an approxinaatiomn,
which is the product of two one-dimensional discrete delta functions

Son(Xi, Yj) = on(Xi) - don(yj).

The choice ofl,, most commonly used in immersed boundary computations is

9)

L (14 cosZt if |r] < 2h,
o= {1758

if |r| > 2h,

although other choices are possible [21]. It will become clear in the algorithm to follow t
32n(X) acts to interpolate quantities between the fluid and fibre grid points.

T
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FIG. 2. The relationship between fluidh) and fibre ¢) grid points.
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When writing the scheme, we will make use of the following notation for finite differenc
operators on the fluid grid. First and second derivatives are approximated using second ¢
centered differences

Gy — diuj
2h

¢|+1j 20 + ¢i— 11
h2

Dy i, i = and Dyxdi, i =

with similar expressions for thg-derivatives,Dy and Dyy. The discrete gradient and
Laplacian operators are then given by

Vhoi,j = (Dx, Dy) éi j and  Angi,j = (Dxx+ Dyy) ¢ j,

and the second derivative of fibre quantities is den@eg, .

We are now in a position to state the algorithm, which is a discrete version of Egs. (
(2), (6), and (8). Assuming that the velocitf}; and fibre positiorX}'; are known at time
t_1, the procedure for updating these values to tigis as follows:

Stepl. Compute the fibre force density
f' = o DseX[, (10a)

where we have assumed, for simplicity, that the force is a linear function such as tha
Eq. (6).
Step2. Distribute the fibre force to fluid grid points

Np—1

Zﬁ < 82n(Xi.j — X[71) - h. (10b)
Step3. Solve the discrete Stokes problem

Ll-n~—Un 1
p( e )z“Ah“i",J = Vap; +F. (10¢)

Vh-ul; =0, (10d)

which is a simultaneous system of equations for the velagity and pressurep); at
time leveln. Because the fluid grid is rectangular and equally spaced and the bound
conditions are periodic, this system can be solved very efficiently using a Fast Fou
Transform (see [14] for detalils).

Step4. Evolve the fibre at the new local fluid velocity

Xn
Z uf'j - San(xij — X[H) - b2, (10e)
i,j=0

Step5. Incrementn and return to Step 1.

Since this algorithm applies an implicit (Backward Euler) discretisation to diffusio
terms, and a Forward Euler step for the fibre force and position, we will refer to it as t
Forward Euler/Backward Euleror FE/BE, method. This designation will also serve to
distinguish it from other semi-implicit time-stepping schemes that will be introduced lat:
in Section 4.
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3. LINEAR STABILITY ANALYSIS

As mentioned in the Introduction, a great deal of effort has gone into applying
immersed boundary method to various physical problems and improving its efficiel
However, comparatively little work has been done on analysing the behaviour of solut
to the underlying equations of motion [12, 7, 5]. In this section we will use an appro:
akin to that in [12, 7] to perform &near modal analysi®f the immersed fibre problem
in a more general form. We are able to obtain details about discrete modes associate
immersed fibres which relate to the stiffness observed in immersed boundary computat

3.1. Linearisation and Smoothing

Consider a portion of the fluid domain, labeledin Fig. 1, on which the immersed fibre
is approximately flat. Suppose that the fibre is at equilibrium along the horizontgl+®
and that its current position is a small perturbation from this rest state. For the purpos
isolating the influence of the fibre on the flow, we extend the boundari€g ¢ infinity
in the y-direction as in [23].

A common form of the tension used in immersed boundary computations [d5His
T (JaX/as| — 1) with T (0) =0, corresponding to a fibre which is slack in the reference co
figuration|aX/ds| = 1. However, most physical applications involve fibres under tensic
and so we choose an equilibrium state defineth®yy ds| = 6, corresponding to a fibre that
is either under tensiod (> 1) or slack ¢ = 1) in its rest state. The solution is then linearise
by supposing a perturbation of the form

X(s,t) = (@s+£&(s, t), n(s, 1)), (112)

and assuming thdt, n, u and their derivatives are small.

We next incorporate the effect of smoothing the delta function which is inherent
the immersed boundary method. To this end, we introduce a strip of wjdthlled the
smoothing regionon either side of the fibre, wheeerepresents the radius of support of
the approximate delta function. The fluid domaiy, is now divided into three subregions,
Q¢, g, andQy, as pictured in Fig. 3. The smoothed delta function, dendtex)), is the
cosine function introduced in Eq. (9) with=2h corresponding to the smoothing radius
€ = 2h used in actual computations.

yt+oo

FIG. 3. A blow-up of the regior, in Fig. 1, with the fibre at equilibrium along= 0, and the smoothing
region€§, of width 2.
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Stokes’ equations now read

paa—l: = MAU—VD—F/f(S,t)'fSe(X—X(S, t))ds, (12)
r
V.-u=0, (13)

where the integral term has support only on the smoothing reé@joand is zero elsewhere.
The linearisation of Egs. (4) and (5) follows that of [23], and so we will simply state tf
result, that
3%t 9%y

f(s,t) (Utasz» Unasz>, (14)
where the normal and tangential force coefficients are given by T (6) /6 andoi:=T'(6).
Finally, the fibre evolution equation can be written as an integral solely over the smooth
region:

X =/ u(x, t) - 8(x — X(s, 1)) dx. (15)
at o

€
0

The remainder of Section 3 is devoted to solving the linearised equations of motion
examining the behaviour of the resulting solution modes.

3.2. Derivation of the Dispersion Relation

We now look for separable solutions of Egs. (12)—(15) that have the form of Four
modes

v — eAt+faX i\)(y) and {S } — ekt+fa93{ > }7
o n n
P p(y)

where the wavenumberis a positive real number, aiid= «/—1 is the imaginary unit. The
exponential time factok embodies the growth or decay characteristics of each solutic
mode. One such solution must be found o, and p on each of the three subdomains
Q7 andQg. After these expressions are substituted into Egs. (12) and (12fowhere
the force term is zero, Stokes’ equations reduce to a system of ODEs with solution

pE(y) = A*e™, (16a)
0% (y) = B*e™HY — %Aie”y, (16b)
B (y) = i%‘ BEe & AT, (160)

whereg is a new parameter defined By = o + £5. with Re (8) > 0.
Within the smoothing region, the integral forcing terms lead to a system of coupl
integro-differential equations. After we linearise the delta functions and drop all terms
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second order or higher in the “~” solution components, these equations reduce to [21]

2

(pA + pa? — pde—yz) 0 +fap® = —010a?D. & de (y), (17a)

d? dpe .

2 U e — _ 25 A

(p/\ﬂwt udy2> + dy onfaD7 de(y), (17b)
falf + ?ﬂvy =0, (17¢)
1 =D, / 0 (y) - d(y) dy, (17d)
M =0, [ 0 dydy (17¢)

The expressio, arising above is the Fourier transform of the smoothed delta functic
which for the cosine approximation is

- € 72 sin(ae)
D.:= . (rydr = —————.
/_E © Odr ae (2 — a2e?)

We draw the reader’s attention to the fact that the paranietistinguishing slack fibres
from those under tension, appears simply as a multiple of the forcing parameterin (17a
(17b). Consequently, we will assume for the remainderdhatl, which is equivalent to a
rescaling ofo,, ando;. We should mention that Cortez and Varela’s analysis of a circul
fibre [5] identifies a significant difference between the motion of a fibre depending
whether it is slack or under tension. However, their results are restricted to inviscid fl
and apply to the bulk motion (wavenumhes= 0) of the fibre. Our “flat fibre” analysis, on
the other hand, is insensitive to vertical translations of the fibre and is intended instes
capture the behaviour of the wavenumbets O.

Sinceé andif are constants, one may solve (17a)—(17c) for the velocity and press
without knowing the fibre positiona priori. The resultingl andv* are substituted into
(17d) and (17e), yielding expressions foand:/, which are then used to find the velocity.
This procedure involves extensive algebraic manipulations, for which we found the symt
algebra package MLE [4] indispensable. Unlike the solutions (16a)—(16c)soﬁ, the
expressions ofeg are extremely lengthy, and so they are not presented here.

At this point, we have expressions for the solution components on three regions,
involving several unknown constants of integration. % Egs. (16a)—(16c) involve the
four coefficientsA* andB*, and the solution of§ introduces an additional four constants
of integration. In order to determine the solution uniquely, we require a further eight ¢
ditions relating the eight constants, which arise quite naturally from matching the soluti
at the interfacey = +¢. Four matching conditions ensue from the requirement that t
pressure, velocities, and normal derivatilde/dy be continuous at the interfage= ¢, and
the remaining constraints arise from continuityyat —e.

The resulting system of equations is linear and homogeneous, and so there is a non-
solution only if the determinant of the>88 coefficient matrix is zero. The determinant
condition is simply adispersion relationwhose solutions givé as functions otx. The
dispersion relation is fairly complicated, and so is presented separately in the Apper
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although it can be written symbolically as

SB) -5 B) =0. (18)

The subscripts andt on the two factors in (18) correspond to the fact that the fibre forc
parametet, appears only in the fact&; (8), while § (8) depends only on;. After (18)
is solved for rootgs, the growth rates are obtained via= %(,62 —a?).

As in the dispersion relation for the unsmoothed problem from [23], there is a decoupli
between the normal and tangential fibore modes. However, the dispersion relationis no lol
a polynomial, as it was for the jump problem, since the factors in Eq. (18) involve trigon
metric and exponential functions of the parameters (see the Appendix). Consequently, t
is no analytical expression for the solutiofiand our only recourse is to apply a numer-
ical root-finding technique such as Newton’s method. The presence of exponential te
in the dispersion relation makes the equation very ill-conditioned, particularly when t
wavenumber or the force is large. The Newton solver requires a careful rescaling of
dispersion relation in conjunction with quadruple precision arithmetic and continuation ir

3.3. Stability and Stiffness of Fibre Modes

In order to make these results as applicable as possible to previous work, we have ch
representative parameter values from computations reported in the literature for biolog
applications (primarily from[6, 15, 16]). We choose= 1.0 g/cn? and the forcing parameter
o to lie between 10and 16 g/cm- s?, wheres = o, = oy. The viscosity used in many
biological applications (involving intra-cellular fluid, for example);is=0.01 g/cm s,
while that for blood is 0.04 g/crs. However, most immersed boundary simulations of th
heart and arteries have been forced to take- 1.0 in order to avoid limitations on the
time step. The domain is a square with sides of length 1 cm, on which is laidxe&684
computational grid, and the fibre is discretised at 196 points; Ne- 64, ¢ = 6—24, and
Np =196. We performed grid refinement studies which demonstrate that the results
present next do not change significantly as the number of grid points is increased.

We now consider a discrete set of wavenumberss 27 - i, fori € {1,2,..., N},
corresponding to the modes that can be resolved on an equally spaced grid with n
spacingh = ﬁ in the x-direction. By restrictingr in this manner, we are still dealing with
the continuous equations but have discretised the prolslean idealised sens&\Ve also
choose the smoothing length= % to agree with the radius of support for the delta functior
in the immersed boundary method.

Stability. For all wavenumbers and parameter ranges that we have considered, the
lution modes arising from the dispersion relation exhibit a decay rate with negative r
part; that isRe (1) < 0. While this is not as strong a result as the stability proof presente
in [21] for the jump formulation of the problem, it still provides compelling evidence the
the smoothed fibre modes are also stable in time.

Stiffness. The stiffness of the immersed fibre problem is characterised by the size of 1
complex eigenvalues. A large variation in the magnitude of the real pRet (1) indicates
a solution with components that decay on widely varying time scales; correspondingl
large variation inlm (1) points to modes with disparate frequencies of oscillation. In bot
cases, the problem is distinguished by a mixture of time scales that differ in size by orc
of magnitude: any computation based on such a problem requires the use of stiff solve
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TABLE |
Comparison of the Maximum X for Solution Modes of Stokes’ Equations, the Jump
Formulation, and the Smoothed Problem witho = 1¢°

n=0.04 n=10
max|Re(A)| max|Im(1)| max|Re(A)| max|Im ()|
Stokes modes B8x10° 0.0 16 x 10° 0.0
Fibre modes (jump) 3x10° 9.6 x 10° 6.3x 10° 9.0x 10°
Fibre modes (smooth) Bx 10° 6.1x 10 59x 10 1.3x 10

By examining the decay ratdRe (1), and frequencies of oscillatiohm (1), we can
quantify the stiffness of the solution and its dependence on parameters. Table | summ:e
the maximum values of for the jump and smoothed formulations of the problem, wit
o = 10° representative of the range of forcing parameters encountered in physical probl.
The Stokes modesrrespond to solutions of Stokes’ equations without an immersed fik
for whichAS = —%az.

Let us begin by comparing the Stokes problem without a fibre to the “jump” problem w
adelta function force, from which itis clear that the presence of animmersed fibre affect:
rate of decay of solution modes considerably, while also introducing significant oscilla
features in the solution. The fibre therefore introduces a certain degree of stiffness i
problem, which translates numerically into a stricter requirement on the time step in
immersed boundary method. The magnitudé ofcreases by a factor of 7 when= 1.0,
and by almost 2000 fgr = 0.04. It is here that the unsmoothed analysis over-predicts t
stiffness observed in computations. The maximum allowable time step typically depe
inversely on the magnitude of the solution modesrom which the first two rows of
Table | suggest that immersed boundary computations should require a time step o
of magnitude smaller than that for Stokes flow without a fibre. On the contrary, immer
boundary computations with the moderate forcing ef 10* exhibit time step restrictions
comparable to those in flows without an immersed fibre, even when viscosity is take
small as 0.04.

This discrepancy can be attributed to exclusion of smoothing effects in the jump fori
lation of the problem. The final row of Table | indicates that the smoothed modes are n
comparable in size with the Stokes modes, and hence much more in line with what is
in actual computations for this example. Nevertheless, the appearance of a large imac
part ofA translates into a considerable degree of stiffness, which is also observed in cor
tations for this parameter range. It is clear that it is necessary to include smoothing eff
as done in this paper, to predict time step restrictions for immersed boundary calculati

Figure 4 gives a pictorial representation of the effect of smoothing on the entire disc
spectrum of fibre modes. Replacing the delta function with a smoothed approxima
clearly has a profound effect on the decay and frequency characteristics of animmersed
particularly for the larger wavenumbers. However, it appears that the lowest wavenur
modes (withe = 27) match quite well between the two problems, which suggests that |
dominant solution features are relatively unchanged by smoothing.

It is interesting to compare the sizes of solution modes in terms of viscosity in Tabl
While a reduction inu decreases the stiffness of the Stokes problem considerably,
smoothed fibre modes are affected to a much lesser degree, with the modes only decre
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FIG. 4. A comparison ofRe (i) and Im(A) for the jump and smoothed dispersion relations witk
[27, 1287], 1 =0.04, ando = 10°.

by a factor of 2 in magnitude, and the imaginary part actually becoming larger (the img
cations of this behaviour for time-stepping will become obvious in the next section).
the other hand, the dependence of the fibre modesiemuch stronger, with the stiffness
of the problem intensifying as the forcing parameter is increasedoTdhependence was
not included in Table 1, since a detailed discussion of the effegtarid.. on the time step
restrictions, along with comparisons to actual computations, will be given in Section 4.

Finally, we observed that without exception the largest growth rates arose fraanthe
gentialterm in dispersion relation, with the normal modes smaller and similar in magnitu
to Stokes’ modes. This is consistent with the asymptotic result of our previous work whi
showed that the normal fibre modes are similar in magnitude to Stokes’ modes in the I
o limit [23]. Therefore, the stiffness in the problem may be traced to tangential oscillatio
of the immersed fibre. It is very possible that the decoupling of the fibre modes may
exploited to develop more efficient numerical solvers, perhaps using some form of res
ing or preconditioning based on a local linearisation near the fibre which singles out
tangential motions.

4. TIME-STEPPING SCHEMES

The linear analysis of the preceding section showed that the fibre modes capture
qualitative behaviour manifested in computations, provided the smoothing effect of -
delta function approximation is taken into account. We will now use these stiff fibre moc
to explain the severe time step restriction on immersed boundary computations in wi
the fibre is treated explicitly. Bgxplicitwe refer to a method (such as thE/BEapproach
outlined in Section 2.2) that treats the fibre position and forcing term explicitly, regardle
of whether the viscous and pressure terms are treated implicitly or explicitly. As we w
see in Section 4.1, it is in fact the fibre forcing terms that govern the time step in expli
computations.

The severe stiffness arising from the immersed boundary problem and the corresp
ingly strict time step limit in computations have been well documented in the literatu
[15, 25]. As a result, the importance of dealing with the immersed fibres in an implicit fas
ion is obvious, and a great deal of effort has gone into developing variations of the met|
that couple the fibre terms in the equations implicitly with the fluid. We have separated
various methods into the following four classes, based on the manner in which the fi
force term and fibre evolution equation are discretised:
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A. Explicit: schemes that are explicit in the fibre force and position, and yet couple
diffusion terms implicitly (that include thEE/BEscheme of Section 2.2). The vast majority
of recent computations couple diffusion and convection implicitly by combining an Al
step with a pressure projection step. More recently, it has been recognised that conve
is not so important in relation to the stiffness arising from the fibre, and the fluid equati
have been solved using a coupled Stokes solver, while treating convection terms expl
using upwind differencing [17, 14].

B. “Approximate implicit: a scheme that couples the fibre force with the fibre evol
tion equation to form an iteration on the fibre position that is independent of the fl
unknowns [15]. Once the iteration has convergedjntermediate or predicted fibre posi-
tion is used to compute the fibre force in the fluid equations, which are then solved u
the same techniques as those for the explicit schemes. While this is not truly an img
scheme (and hence the name), the iteration helps to prevent violent instabilities in fi
with extremely large force parameters. An alternate formulation of this class of itera
schemes was developed in [8] in terms of minimising an energy functional for the fi
position.

C. Semi-implicit: schemes that couple the fibre with the fluid unknowns in an iterati
fashion, such as the method proposed by Mayo and Peskin [13].

D. Fully implicit: schemes in which the fibre and fluid unknowns are solved simultar
ously. Tu and Peskin [25] implemented a fully implicit solver for Stokes flow and show
that while it appeared to be unconditionally stable, this approach was far too expensiv
practical computations.

It is methods A and B that have been used most often in practice, with the majorit)
recent computations using the explicit technique A. While the approximate implicit sche
does help to ease the severe stability restrictions in problems with extremelylaitdge
our experience that the added cost of the iteration embedded in each time step esse
wipes out any advantage that would have been gained by taking larger time steps.
predominance of explicit schemes, which are extremely simple to program, is thus
surprising.

Nonetheless, the stability restrictions on explicit computations persist, and remain a
ous limitation on the type of problem that can be simulated numerically. We have shown
the stiffness arises not from Reynolds number effects, but rather from a large fibre forcing
rameter. While implementing a better fluid solver might provide improved resolution of |
fine-scale boundary layer effects present in high Reynolds number (convection-domin:
flows, it will not help deal with the stiffness in immersed boundary computations aris|
from the fibre forcing terms, which is present even in the absence of convection. On
contrary, it is essential that more efficient implicit or semi-implicit schemes be develoj
which deal specifically with the stiffness that dominates computations when the fibre fort
termis large.

In this section, we restrict our attention to explicit and semi-implicit schemes. The fi
modes derived in the last section will be used to derive stability restrictions for various
plicit time-stepping schemes, using a straightforward application of stability diagrams.
Runge—Kutta family of schemes exhibits the most desirable properties of explicit schel
and we briefly describe a class of semi-implicit schemes, similar t6EABE method, but
which use an Implicit—-Explicit Runge—Kutta (t(EX—RK) approach instead. Finally, we
demonstrate how our modal analysis can be extended to time discrete problems, an
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technique will be applied to the Mayo—Peskin method in order to estimate converge
rates for the iteration.

4.1. Explicit Schemes

In the following discussion, we distinguish between the solution modes arising frc
an idealised discretisation of the smoothed fibre, and those from Stokes flow without
immersed boundary, since the time step in a discretisation of the immersed fibre prob
is limited by a combination of diffusive and fibre effects. Figure 5 depicts the relative si
of both sets of solution modes in theplane, fore = 10* and 16, with the Stokes modes
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FIG.5. Region of absolute stability for the Forward Euler scheme, along with the smoothed fibre mddes
from Eqg. (18), and Stokes modesg from i = — %az. The stability boundary, drawn as a solid line in plots (a) and
(b), is computed on the basis of the Stokes modes, while the maximum allowable timéstpik°, are listed
for each set of modes. Note the difference in the scales used on the vertical axes, particularly fsoth)(a@nd
(c)— (d).
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marked« and fibre modes. Note that these plots correspond to the complete set of moc
for the results presented earlier in Table I. The solid curves represent the boundary c
region of absolute stability for a Forward Euler discretisation, based on Stokes mo
while the maximum time step allowed by Forward Euler for both sets of modes (denc
k* andk®) are listed on each plot for easy comparison of the stability limits. Figure 5(
corresponding tqu = 1.0, demonstrates that the time step restriction for a fibre force
o = 10%is comparable to that experienced in the absence of the fibre. Wisdncreased
to 1 in Fig. 5(b), however, the modes migrate outward along the imaginary axis, requit
a much smaller time step. A similar worsening of stiffness is observed when the viscosi
decreased, as shown in the remaining plots in Figs. 5(c) and (d) for the much lower visc
of u = 0.04.

It is precisely the parameter regime corresponding to large fibre force and small
cosity where immersed boundary computations have been observed to encounter the
difficulty. In numerous heart valve simulations reported in the literature [16, 18], a care
scaling argument was required to justify choosing= 1.0, instead of the actual viscosity
of blood, 1« ~ 0.04, in order for the time step requirement in computations to be practic
The most significant conclusion that can be drawn from this discussion is that the stiffi
in the immersed boundary method arises from the interaction of the fibre and fluid, thrc
a combination of large fibre force and small viscosity, rather than the high Reynolds nun
effects that limit typical fluid flow calculations for other problems not characterised by t
fluid—structure interaction.

A simple strategy for countering the stiffness is to search for different explicit scher
that deal more effectively with solution modes that tend to cluster near the imaginary ¢
An obvious candidate for an alternative explicit time-stepping technique is the Runge—K
(RK) family of schemes. Figure 6 presents the results of fully explicit computations us
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FIG.6. Comparison of computed time step restrictions for the Runge—Kutta schemes and the ADI impler
tation of the immersed boundary method, foe 0.01.
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TABLE Il
CPU Times for the o = 2.5 x 10° Full Immersed
Boundary Computations in Fig. 6

CPU time requiret|

Scheme nw=10 n=0.01

RK1 370.59 1658.21
RK2 138.12 143.02
RK3 110.87 99.44
RK4 109.76 52.64
FE/BE 53.96 54.12

2Performed on an SGI Origin 2000 195 MHz R10000
processors, 512 Mb RAM).
®In seconds.

the Runge—Kutta schemes of orders 1 through 4, for various choices of the fibre forc
parameter. The semi-impliditE/BEresults are included for comparison. We can see fror
the plots of maximum time step for the various RK schemes (along with the accompany
CPUtimesin Table Il) that thRK4 scheme is the best of all the explicit methods considere:
and becomes comparable in cost to Fi&BE method, particularly when the viscosity is
reduced. While the semi-implicit approach is very similar in principle toRK& method,
there is clearly a great deal of advantage to be gained from its implicit treatment of |
diffusion term, about which more will be said in the next section.

4.2, Stability of the FE/BE Scheme

We begin by rewriting the equations of motion and identifying the terms that are disc
tised implicitly and explicitly:

u 1= X pn 1
— =—-So0—+—Au—-Vp, 19
it p T + 0 0 b (19)
explicit implicit
V.u=0, (20)
axX
— = Su . (21)
at —~~
explicit

The symbolsS andS_represent the delta function interpolation operators, which transf
between grid quantitieg (x) and fibre grid quantitie8V(s) as follows:

SV(x):/ V(X) - 8. (X—X(s, t)) dx and S_W(s):/W(s)-(Se(x—X(s, t)) ds.
Q r
If we discretise these equations in time only, using BE&/BE scheme described in
Section 2.2, then we have

2

u" — k—MAu“ + EVp” =u"t 4 E«STO' d—X”‘l, (22)
o o p dg
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V.u"=0, (23)
X" = X" 4 kSun, (24)

where we have abused notation somewhat by denoting semi-discrete quantitiestat ti
(which are continuous in space only) by a superscript

We now investigate the time stability of solutions to Egs. (22)—(24) by assumingha
andX" depend on the solutions at the previous time step as

n-1

u"=yu and X" =yX"L

where theamplification facton replace’ from the time-continuous analysis. Once agair
we look for separable solutions of the form

{ u } _ efax l’:l(y) and XN — el‘aes)‘(n’
P p(y)

which on substitution into the time-discrete equations yields a system of ODEs for
solution components as functions wf It should be clear to the reader that the solutio
process closely parallels that described in Section 3.2, and so we omit the details ©
derivation. At the end, we obtain a dispersion relation which gives the amplification fac
in terms of the other parameters in the problem. FE$BE scheme is stable provided that
all y arising from this equation satisfy| < 1.

As before, we apply a Newton iteration, with continuation in the smoothing radiias
solve the dispersion relation over a range of time steps and for all wavenuaj®earse
[1, 64]. The character of the amplification factors is exactly what we would expect gi\
our previous experience with the modal analysis of the continuous problem. We find
for time steps below a certain critical valdex knax, all roots satisfyy < 1 and the first to
become unstable fde> knax COrresponds to a tangential mode of oscillation in the fibr
The critical time stefkmax iS given in Table Il for various forcing parameters, with the
corresponding time step limit observed in computations with the same fibre force. Ir
cases, our analysis predictkg,x which is consistently one-half as large as the actual tin
step limit encountered in computations. Considering the approximations that have |
made in our idealised discretisation, this discrepancy is not surprising.

4.3. Semi-implicit, Iterative Schemes

Instead of solving Egs. (22)—(24) in an explicit, two-step process, the iterative sche
in [13] couples the fibre evolution equation implicitly with the solution of the fluid equatior

TABLE IlI
A Comparison of the Maximum Time Step Pre-
dicted by the Theory and Observed in Computations
for the FE/BE Method, with N = 64,e = &, u = 1

o kmax (theory) Kmax (computed)
1 4x10°° 8x 108
10 2x10* 6x10*
10 6x10° 1x10*

10 8x10°° 2x10°
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In essence, this involves replacing quantiiie8 at time leveln with values(-)™™, where

m refers to the iteration number. The coupling comes from replaxihg in Eq. (22) with
X™m-1 We make a change of notation here, and write the Stokes solve represente
Egs. (22) and (23) symbolically, using the operatbas

p dg?
XM = X" 4 kSu™™,

u™m — H<Un1 + kgo_dzxn,ml) ,

By substituting the expression faf™ into the fibre evolution equation, the iteration may
be written as a single equation &g

—ok? d?
XM = X1 4 kSHUML 4 SHS T XL,
— P ds?
zZn-1 N——
A
or more compactly as
XM = 7" 4 SHSAXM™ L, (25)

In practice, thisiteration converges very slowly, and the convergence is speeded considel
by using the modified iteration

(T — DA) (X"™ — Xn,m—l) —7n-1_ (T — SHS_A)Xn’m_l, (26)

which clearly has the same solution as (25). Hérejgnifies the identity operator, and
D = SS§ is a scaling factor. In the fully discrete setting, — SHS.A) is a dense matrix,
while (Z — D.A) is a block tridiagonal preconditioner which accelerates convergence.
To quantify the rate of convergence, we again look for solutions of the X#A =
XXM on each of the subdomaigk and$2§, and solve the resulting system of ODEs
as before. While the solution procedure is very similar to that seen above, it is import
to realise that there is one very significant difference from the continuous problem: rat
than define the fluid force implicitly in terms of the fibre position, we compute the fance
the basis of the fibre position from the previous iteratiGonsequently, the semi—discrete
analogue of the fibre iteration (26) is an explicit formula ¥6¥™ in terms ofX™™-1, and
so our analytical solution procedure is simplified considerably.
Equation (26) reduces to an iteration of the form

B>‘(n,m — C>"(n,mfl + Rnfl

where B andC are 2x 2 matrices, anR"! is a 2-vector with entries evaluated at the
previous time step. Since we are only interested in the rate of convergence of the itera
it is expedient for us to consider the difference between successive iterates

nm __ xnm v n,m—1
E™" =X - X ,

which satisfies the recurrence relation

En,m — M En,m—l
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where M = B~1C is theiteration matrix The convergence properties of the iteration ar
manifested in the eigenvalues b, which can be found using MPLE as

_ on'k? sirf(ae)(—m? + mhe ¢ 4+ 5720363 + 305¢® + 2rae) 27)
Q= ae(a?e? + 72)?(—date” + Ba?edn2 — 4edm* + 3oy Ak? Sinz(oze)) ’

ont k2 sirf(ae) (72 — mw2e ¢ + o363 + 72ue)

= . (28
ae(o?e? + 712)2(—4a4e7 + 802e572 — 4e374 + 3o, m4k2 Sinz(ae)) (28)

Just as the solution to the continuous problem exhibited a decoupling between norma
tangential modes, so also does the convergence of the semi-discrete scheme depe
two distinct eigenvalues, corresponding to normal and tangential forcing. The converg
of the scheme is governed yax=max(|ot|, lonl): If omax < 1, the iteration converges;
otherwise it diverges. A contour plot of.ax IS given in Fig. 7, for parameter valugs=1
ando = 10*. We observe that the iteration always converges, which is to be expected, s
the scheme was proven to be unconditionally convergent in [13]. Furthermore, fora g
time step the slowest mode to converge is the tangential mode; therefore, just as tang
modes provide the greatest contribution to the stiffness in the problem, so also do
govern the convergence of tiP iteration.

We also performed numerical experiments on the same “flat fibre” model problem use
Section 3.3 in order to verify the predicted convergence rates, and the results are summ:

N

\
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af2r

FIG. 7. Convergence rate contours for thi® scheme. The vertical dotted line separates the parameter sp:
into regions where the convergence rate for the normal mode (left) or the tangential mode (right) isdagB&t)(
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TABLE IV
Convergence Rates Predicted by Theory and Observed in Full Immersed Boundary
Computations for the MP Iterative Scheme

o=10° o =10 o=10
k Theor. Comp. Theor. Comp. Theor. Comp.
0.0001 0.01 0.01 0.08 0.08 0.43 0.43
0.0025 0.05 0.05 0.33 0.33 0.75 0.76
0.0005 0.17 0.18 0.62 0.62 0.84 —
0.0010 0.43 0.43 0.79 0.79 0.87 —
0.0025 0.75 0.73 0.86 — 0.88 —
0.0050 0.84 0.84 0.88 — 0.88 —

Note.The “—” entries correspond to instances where the scheme became unstable.

in Table IV. Convergence rates were computed from numerical results using the formu

Red™!

Rate= ———,
Red"

where

1 Np—1 1/2
1112
Red' = | (- Y [Ixm - X2
b 120

isthe residual atiteration leveland| - ||, is the standard ,—norm on vectors. The predicted
convergence rates were found by readingeaff« for the dominant¢ = 2x) mode on the
contour plot in Fig. 7, which always correspond to the normal fibre modes. Even though
tangential convergence rate is invariably the largest for the entire rang@&any given
computation, and hence should dominate the convergence after a large number of iterat
they are also the modes whose amplitudes decay much more rapidly in time. Within ey
time step, only ten or so iterations were typically required to satisfy the residual toleran
and so it is to be expected that the lowest wavenumber, normal modes will dominate
actual convergence rate observed in computations.

The blank entries in the table correspond to instances where the computation was
stable, which seems to go against our analytical predictions of unconditional converge
However, we believe that this arises from a time instability which affects the numeric
scheme when the time step is taken too large. In fact, the results in [13, p. 269] show
even though the scheme is convergentmodestable in time than the fully explicit method,
it is not alwaysstable. While our analysis captures the convergence rate quite well, it
unable to predict onset of instability in computations.

4.4, Comparison

Before closing our discussion of time discretisations, we will draw a comparison &
tween the explicit and semi-implicit approaches just described. We consider another
problem more typical of that seen in the literature [11, 13, 15], in which the fibre is a clos
loop which initially has the shape of an ellipse. As shown in Fig. 8, the semi—axes of 1
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ilcm

FIG. 8. The “ellipse” test problem: the initial fibre position is an ellipse with semi-axes 0.4 and 0.2 cm. T
equilibrium state is a circle with radius approximately 0.2828 cm.

ellipse are of lengths.2 and 04 cm, and we use the same linear force density functic
with stiffness constarnd. The ellipse will tend toward an equilibrium state that is a circl
with the same area as that of the original ellipse (and radius of approximately 0.2828
because the fluid is incompressible. The reason for choosing this problem rather tha
sinusoidally perturbed flat fibre is that the area (or “volume”) of fluid inside the ellip
can be used as a measure of the numerical error. Immersed boundary computatior
known to experience loss of volume, which becomes significant during more extreme
conditions such as those we are considering here with largehis volume loss prob-
lem was identified in [18] and shown to arise not from fluid passing physically throu
the immersed boundary, since the fibre points move along streamlines, but rather
the fact that the interpolated velocity field through which the immersed boundary mc
is not discretely divergence-free. LeVeque and Li showed in [11] that the volume |
in the immersed boundary method for a problem nearly identical to our ellipse exan
grows linearly in time. A modification of the divergence stencil was developed in [1
which reduces the volume loss significantly (at the expense of an increase in the cc
delta function interpolation). We have not implemented this modified stencil in our sin
lations.

We applied th&RK1, RK4, FE/BE, andMP methods to this problem and listin Table V the
maximum time steps and CPU times required for each method for two sets of computa
with ¢ = 10* and 13. Among the fully explicit schemes, tiRK4 method is up to an order of
magnitude more efficient than Forward EuleriRi1). We also see th&K4 is competitive,
in terms of CPU time, with th&E/BE method.

Moving to theMP scheme, we saw in Table IV that coupling the fibre and fluid togeth
within an iteration does allow a time step much larger than that for explicit scheme:
be taken. However, there is a corresponding increase in the rate of volume loss, w
is given in Table V as a change in area relative to the initial 0.251. #he chose two
representative time steps for tMP scheme in Table V, from which it is clear that while
stability restrictions are much more lenient than those for the other schemes, the me
suffers from a much more severe loss of volumk i§ taken too large. In fact, there is no
advantage to using the iterative scheme if we require a level of volume loss comparak
that experienced by the other schemes.
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TABLE V
Comparison of Computational Costs for Several Explicit and Semi-implicit Schemes
with N = 64 andN,, = 192

o =10, teng=0.020 o =10, teg=0.005
Scheme Kmax % \Vol. loss CPU Kmax % \ol. loss CcPU
RK1 13x10° 2.8 114.31 10x10° 4.4 372.49
RK4 80x 10° 2.4 66.51 P x 10°° 4.4 44.16
FE/BE 7.0x10° 4.4 28.45 10x10°° 5.2 49.00
MP 8.0x 10°° 8.4 56.62 5x10° 6.8 44.00
16x 10 13.1 29.99 P x 10°° 11.9 26.72

Note.The time stefkn.x Was chosen to be the largest allowed by the method for stability, except fbfRhe
scheme (which always converged). The “volume loss” is computed relative to the equilibrium value of 02251 ci
CPU timings were taken on an SGI Origin 2000495 MHz R10000 processors, 512 Mb RAM).

2In seconds.

We can conclude from these results that whileMteiteration may be unconditionally
convergent and allow significantly larger time steps to be taken, the time step is still limif
by the accumulation of error in the incompressibility condition. Clearly, there is a ne
for more work to be done on developing new time-stepping strategies to treat the fo
implicitly in some type of iteration, while at the same time controlling the volume error.

Our observation that an appropriately chosen explicit discretisation performs as wel
or better than any of the implicit methods used in practice, particularly when the fibre fol
is large, should prove to be very helpful in improving the performance of the immers
boundary method. Since tiE/BE method handles the fibre terms in the equations witl
a Forward Euler step, it seems reasonable to suppose that we can take advantage
particular nature of the fibre modes by combining a Runge—Kutta discretisation for the fi
along with implicit handling of the remaining terms in the equations. A class of scherr
that fits these requirements exactly is the Implicit—Explicit Runge—KuttaM&X—RK)
family introduced in [1]. These methods have the additional advantage that they req;
minimal changes to the existing logic in the immersed boundary code. We applied s
eral IMEX—RKmethods of various orders to the immersed fibre problem, and found tt
the performance was comparable to Bi¢4 andFE/BE results, with the latter differing
from the first ordef~E or RK1 method only in its implicit treatment of diffusion. While
this outcome is somewhat disappointing, our straightforward implementation clearly lea
room for further investigation. We expect that more sophisticated approaches may lea
significant improvements, which may become more evident in Navier—Stokes computati
with high Reynolds number, convection-dominated flows.

5. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the immersed fibre problem with a smoothed de
function force. By restricting wavenumbers to a fixed rangeNJLwe were able to in-
vestigate “idealised discretisations” which neglected discrete grid effects. Our analy
was able to predict observed time step restrictions for several explicit and semi-impl
time-stepping methods. Our theoretical results suggested that the explicit time-stepj
schemdrK4 would be appropriate for this problem and we demonstratétiiaican give a
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performance comparable to that of the standaEBBE scheme for extreme conditions,
such as those arising from large fibre forcing and small viscosity. We observed tha
stiffest modes arise from the class of tangential fibre oscillations. It is possible that s
type of preconditioning strategy based on this special property of the solution, perhar
performing a local linearisation that decouples the normal and tangential motions of
fibre, may lead to more efficient iterative schemes. A similar technique was used in [9]
removing the stiffness in interfacial flows governed by surface tension effects. This wil
the subject of future work.

APPENDIX: DISPERSION RELATION

The dispersion relation summarised in Eq. [18F&3) - § (8) = 0 has two factors that
can be obtained with the aid of ARLE:

ﬁ(ﬁ) — —462,33(01262 + n,2)2(ﬂ2€2 + 7T2)2(052 _ ,32)2
Un,ozlje2
MZ

-{-6052/3(0[262—}—ﬂz)(ﬂ262+7'[2)(0[2 _ ,32)(364(12/32 +2€27T2(()l2+,32) + 27_[4)]’
$(,8) — 462/3(06262 + ﬂz)z(ﬂZGZ + 7'[2)2(062 _ ’32)2
O"[pzD’\e2
MZ

+ [0 (8262 + 12)2(1 — e %) — mla*(aPe? + n2)2(1 — e %)

+ [7T4a,8(,82€2 + 7T2)2(1 _ e72ae) _ 71’4()(2(0[262 + 7_[2)2(1 _ e—Zﬂe)

— SBa?Br2(a%? + 12 (B2% + 72 (a? — BO)].

An asymptotic expansion of both factors (see [21] for details) for small values of
smoothing radiug indicates that

S:(B) = SB) + €SB) + O(e?),
SB) =B + O(e),

whereS)(8) and(B) are the dispersion relations from the “jump problem” witk- 0,
givenin [23]. Therefore, the modes for the smoothed delta function problem reduce to tl
of the jump formulation as — O.
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